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Abstract

Selective breeding programmes depend on high-quality measurements of phenotype

and genotype with repeated individualised phenotype measurements throughout the

life cycle being optimal. Recent advances in electronics and computer vision technolo-

gies offer opportunities to improve both the quality, quantity and individualisation of

repeated phenotypic measurements, but remain underutilised in aquaculture breed-

ing programmes. In this study, we compare manual measurements of phenotypic traits

of Chinook salmon (Oncorhynchus tshawytscha) with digital images and an automated

software analysis pipeline written in the Python® programming language using the

OpenCV machine vision library. Manual measurements of length, girth and weight

of passive integrated transponder-tagged individuals were compared with image-

based measures of 738 individuals over a time span from June–December 2019.

Linear regressions showed strong correlations between manual and automated mea-

surements for fork length, girth and weight (R2
= 0.989, R2

= 0.918, R2
= 0.987,

respectively). Image-based softwaremeasurements proved powerful for tracking gen-

eral population changes in growth over the study period while retaining insights about

subpopulations deviating from the average (e.g. losing weight). Taken together, our

study demonstrates that image-analysis can be used to estimate fish growth traits

with a high degree of precision, requires reduced labour and demonstrates that addi-

tional knowledge can be gained through tracking individuals throughout production to

harvest.
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1 INTRODUCTION

Selective breeding programmes for aquaculture are a relatively recent

endeavour compared with the long history of terrestrial plant and

animal breeding programmes, which have facilitated increased agricul-

tural productivity and viability (Gjedrem & Robinson, 2014; Teletchea

& Fontaine, 2014). The aim of breeding programmes is to select and

breed superior animals so that resulting offspring will perform more

efficiently under future production circumstances. One of the main

phenotypic performance metrics in aquaculture breeding and produc-

tion is growth, as improving growth rate is expected to increase farm

profit through a reduction in grow-out time, thus increasing annual

production and economic returns (Gjedrem & Rye, 2018; Houston &

Macqueen, 2019;Murata et al., 1996).

Capturing phenotypic measurements from populations of finfish in

research environments, despite many recent advances (Shortis et al.,

2016; Zion, 2012), is typically carried out manually using tools such as

balances, tape measures and/or fish boards (some of which are now

capable of digitally logging information). Although some examples of

digital image-based phenotyping technologies focusedon scientific use

have recently beendeveloped (Andrialovanirina et al., 2020; Fernandes

et al., 2020;Navarro et al., 2016; SriHari et al., 2019), thesedonot allow

for rapid data capture from live animals. Many commercial systems are

industrially focused (e.g. Vaki Aquaculture Systems Ltd., Iceland) and,

although capable of counting and/or collecting fish size measurements

using machine vision technologies, these systems are cost prohibitive

formost researchers and small-scale producers. Also, they do not allow

for the same individual fish to be assessed throughout growth and life

cycles. Furthermore, recent studies have shown that themeasurement

approachused to infer biomass andpopulation structure (i.e. a subsam-

pling of the population or the measurement of every individual) needs

to be carefully designed if the information collected is to accurately

represent the population (Aunsmo et al., 2013; Nilsson & Folkedal,

2019). Finally, a full understanding of the population dynamics in a

culture environment is only possible if each individual can be identi-

fied and repeatedly measured throughout their growth cycle, such as

through the use of passive integrated transponder (PIT) tags or other

identification systems such as biometrics (Schraml et al., 2021; Stien

et al., 2017). The value of precision fish farming (in which individuals

are tracked) is currently topical with regard to production systems,

and this level of information is hugely valuable. For example, in com-

mercial aquaculturebreedingprogrammes, growth is usuallymeasured

at least 1–2 times during the lifetime of an individual and typically

involves the manual measurement of weight and total length (Kause

et al., 2006; Navarro et al., 2009). Ensuring accurate phenotypic mea-

surements while streamlining the data capture process is a priority

when thousands of breeding candidates need to be assessed.

Conventional manual techniques for assessing fish growth are usu-

ally time-consuming, costly and stressful for the animal (Iversen et al.,

2003). Even with the effective use of anaesthesia and good husbandry

practices, measurement is a stressful event and for both cost and eth-

ical reasons needs to be either non-intrusive (i.e. no removal from

the water) or as infrequent as possible. Image-based methods may

F IGURE 1 Flow diagram of themeasurement workflow used in
this study.White boxes indicate the physical workflow, light grey
boxes show the image processing procedures, and dark grey boxes
show the data processing and visualisation procedures

help to reduce the handling time of fish, as one image can simultane-

ously capture and store a phenotypic recordwhile allowing subsequent

measurement of many phenotypic traits. The value of image-based

methods for morphometric studies of fish has been highlighted in

previous studies based on its performance and the accuracy of the

morphometric measurements (Takacs et al., 2016).
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TABLE 1 Date, tank allocation, number of individuals andmeanweights of Chinook salmonmeasured between June andDecember 2019
using digital images andmanual measurements for this study

Sampling date Tank Number of samples Meanweight± SD (g)

26/06/2019 1 124 1027 ± 208

26/06/2019 2 125 1037 ± 212

12/08/2019 1 88 1553 ± 312

12/08/2019 2 88 1599 ± 326

3/10/2019 1 87 1921 ± 449

3/10/2019 2 88 2028 ± 442

20/11/2019 1 68 2212 ± 586

3/12/2019 2 70 2216 ± 539

Here, we test the feasibility and accuracy of using a simple light

box and camera system to capture digital images and an automated

image-analysis software pipeline (Morphometric software) to mea-

sure individualised growth traits and population structure in Chinook

salmon (Oncorhynchus tshawytscha), New Zealand’s only commercial

finfish aquaculture species (Aquaculture New Zealand, 2020). We

assessed manual measurement methods paired with image-based

methods to compare and contrast the accuracy and performance of the

two approaches for measuring captive salmon populations.

2 MATERIALS AND METHODS

2.1 Chinook salmon culture

Chinook salmon (O. tshawytscha) were maintained at the Cawthron

Institute’s Finfish Research Centre in Nelson, New Zealand. The fish

were reared in a saltwater recirculating aquaculture system at 17

± 0.5◦C with a minimum dissolved oxygen level of 9 mg/L. At the

point of first data collection in June 2019, the fish were split between

two 8 m3 tanks containing 124 and 125 individuals with mean fish

sizes of 1027 ± 208 g (±SD) and 1037 ± 212 g, respectively. A total

of four assessments were carried out and all fish were measured at

each assessment. Fish numbers were reduced randomly throughout

the measurement period to maintain an acceptable biomass in the

tanks, and as such at the fourth and final data collection point in

November/December 2019 there were 68 and 70 fish remaining in

the two tanks, with mean weights of 2212 ± 586 g and 2216 ± 539 g,

respectively (Table 1). Each fishwas individually trackedusing aPIT tag.

2.2 Manual fish measurements

A flow diagram of the measurement workflow used in this study is

shown in Figure 1. Fish were crowded and dip netted from their tanks

into a bath of anaesthetic (100 L of 65mg/L tricainemethanesulfonate,

Syndel, WA, USA) and maintained there until they had reached stage

3 anaesthesia (Stoskopf & Posner, 2008). The fish were then removed

from the anaesthetic bath, scanned with an Avid PowerTracker 6 PIT

tag scanner (Avid Identification Systems, Inc. CA, USA) and placed on

a fish board on top of a digital balance (Ohaus Corporation, NJ, USA).

Weight and lengthwere thenobtained followedby the girth,whichwas

measured around the largest circumference (just anterior to the dorsal

fin) using a flexible tapemeasure. Immediately after the fishwereman-

ually measured, a digital image of each individual was captured. The

time from the fish being netted from the tank to the completion of the

digital image capture was recorded and was generally between 30 and

60s.However, the times for eachmeasurement stepwithin this process

were not recorded. No mortalities were observed as a result of these

handling procedures.

2.3 Digital image capture

Digital images were captured using a custom-built light box (Figure 2).

The box was constructed out of folded and welded 3 mm thick white

polypropylene sheet from which an enclosed rectangular box 600 mm

× 600 mm × 1000 mm (W × D × H) was formed. A further sheet of

1.6 mm white polypropylene cut to 1400 mm × 600 mm (L ×W) was

bent and fittedwithin the rectangular box to formanoval archonwhich

the light strips were mounted. A central 80 mm round hole was cut

in the centre of the arch for the camera lens to pass through. Four

M10nylonbolts andwingnuts (twoper side) penetrated the lower ends

of the arch where it contacted the box to secure it. The bolts passed

through four vertical channels (two per side; Figure 2b) cut in the sides

of the light box which ran from 100 to 600 mm above the base. This

allowed height adjustment for the lighting and camera. Four 600 mm

long ribs were attached to the lower surface of the arch using counter-

sunk stainless-steel screws. These were run from the front to the back

of the unit at 70 and 625 mm, measured from the bases of the arch on

both sides, forming a symmetrical structure. Four 500 mm lengths of

Standard Illuminant CRI 98 D50 5000K LED 24 V flexible strip light-

ing (Beijing Yuji International Co., Ltd, Beijing, China) were installed

between the ribs on each side of the structure. The first strip was

placed 70 mm above the lower rib and at 63 mm intervals thereafter.

A sheet of polymer light diffuser (Rosco Cinegel 3026; Rosco Labora-

tories Inc., CT, USA) was also installed between the ribs on each side

of the unit ensuring that all LEDs were covered, to reduce specular
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F IGURE 2 Digital image capture system used for data acquisition in this study showing (a) the front profile of the unit, (b) the side profile, and
(c) the front profile with the face plates removed. Themajor components of the system are labelled (1) camera, (2) wingnuts for the sliding
adjustable face plate, (3) matte blue polypropylene background, (4) wingnuts and channels for adjusting the light arch height, (5) electrical box
containing LED drivers, (6) LED light strips, (7) flexible polymer diffusers

reflections. The four LED strips on each side of the unit were wired

in series using Two Pin Piercing Grip Strip Connectors and 20 AWG

wire and connected back to an LED driver (Beijing Yuji International

Co.) contained in a weatherproof electrical box. The electrical box was

supplied with mains electricity (240 VAC) through a 5 mweatherproof

electrical lead and plug. The total cost of parts including the plastic

engineering, LEDs, drivers and electrical work (excluding the camera)

was approximately NZ$2500.

A 16-megapixel Panasonic Lumix DMC-GH4 camera (Panasonic

Corporation, Osaka, Japan) fittedwith a Panasonic Leica DG Summilux

25 mm ASPH lens was mounted on a Manfrotto 496RC2 compact

ball head. The camera was arranged so that the lens passed vertically

through the 80 mm round hole in the centre of the light arch, and the

top of the camera faced the front of the unit. A remote shutter but-

ton (covered with a polyethylene zip-lock bag to provide some water

protection) was connected to the camera to allow convenient image

capture. A 0.6 mm thick matte blue polypropylene sheet was cut to

fit the base/stage of the light box to provide a contrasting background

colour for the subjects in the digital images. The camera was operated

in manual mode and white balanced using a 200 mm × 200 mm white

Teflon square. The lens aperture was set to f16 and the ISO speed to

800. The lighting levels and shutter speed were adjusted to provide

RGB values of approximately 185 on the red, green and blue chan-

nels of the digital images, respectively, as measured against the white

squares of aColorChecker SGcolour calibration target (X-Rite, Inc.,MI,

USA). As such, the unit described here is capable of quantitative colour

measurements. These were not a focus of this study however. Here, a

shutter speed of 1/80 s was used. To capture images, fish were placed

inside the light box with their left side facing up towards the camera

and their head to the left of the frame.

2.4 Digital image analysis

The digital images were analysed using Plant & Food Research’s Mor-

phometric Software, which is a collection of software modules for

image analysis focused on marine organisms written in the Python

programming language using the OpenCV computer vision library

(Bradski, 2000). Briefly, the contour (outline) of each fishwasextracted,

and 11 reference points were algorithmically placed on the outline

(Figure 3). These software operations were initially established using

image thresholding and contour feature detection algorithms (used

for this analysis), but more recently conducted using MXNet-based

machine learning models (The Apache Software Foundation, DE, USA)

similar to those described by Fernandes et al. (2020). From these ref-

erence points, a series of measurements was obtained, including body

side area, fork length and body height at 0.25, 0.5 (mid-point) and 0.75

positions relative to fork length.Measurementswere initially captured

as pixels but were converted to millimetres using a 150 mm scale bar

present in each image.

2.5 Data management, statistical analysis and
visualisation

Analyses were carried out using Python 3.8.5 (Anaconda Software

Distribution, 2016)with the pandas 1.1.1 library (The PandasDevelop-

ment Team, 2020) for datamanagement, the statsmodels 0.12.0 library

(Seabold & Perktold, 2010) for linear regression, and the seaborn 0.11

and matplotlib 3.3.2 libraries (Hunter, 2007;Waskom and the Seaborn

Development Team, 2020) for data visualisation. With fish masses

constrained in this study, an ordinary least squares (OLS) regression
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F IGURE 3 A visualisation of the placement of the 11 reference
points generated by theMorphometric software to automate Chinook
salmon sizemeasurements. (a) An example of correct placement of the
reference points by the software. (b) An example of incorrect
placement of the reference points by the software withmotion blur a
probable cause (two occurrences; n= 738). (c) An example of missing
reference points due to incorrect subject placement during image
capture (one occurrence)

was used for simplicity. As samplemeasureswere repeated and paired,

and the population distributions were not normal, pair-wise testing of

manual measures and image-based measures was conducted in R (R

CoreTeam,2021) usingWilcox rank sumtestswithpvalueadjustments

as in Benjamini and Hochberg (1995). To allow this testing, predicted

weight and girthwere calculated from the fish body side area and body

height at the mid-point of fork length measurements extracted from

the digital images using theOLS regression equations.

3 RESULTS

Between June 2019 and December 2019, a total of 738 measure-

ments of Chinook salmon sizes were captured both through manual

measurements and with associated digital images (Table 1) using a

custom-built light box (Figure 2). An example image, including the

reference points (white squares) used to extract automated measure-

ments is shown inFigure3.Of thesemeasurements, 138were captured

in November/December 2019 of individuals that had been present in

the population throughout the study (i.e. repeatedly sampled).

In June 2019, the fish present in the monitored population had

a range of masses between 437 g and 1742 g with a mean of

1032 ± 210 g (± SD). By November/December 2019, the mean fish

mass had increased to 2214 ± 516 g with a range of masses between

924 g and 3794 g. As such, the total range of fish masses used to

establish amass predictionmodel based on information extracted from

digital images of Chinook salmon was 437–3794 g (Figure 4). An ordi-

nary least squares linearmodelwas fitted to thesedata,which returned

an R2 value of 0.987.

Linear models were also established to relate digital image-based

fork length measurements with manual fork length measurements

(R2 =0.989), and the digital body heightmeasurement at themid-point

of fork length to the manual girth measurements. The latter resulted

in a lower R2 value of 0.918, predominantly owing to some notable

outliers.

Secondary visualisations of the population data were carried out to

establish if themeasurements taken fromdigital images could generate

detailed population structures comparable to those captured through

the manual measurements. In this case, violin plots for weight, fork

length and girth from the twomeasurement types were generated and

placed together (Figure 5). A high degree of similarity in the distri-

butions for the image-based and manual measurements was notable.

Pair-wise Wilcoxon rank sum tests were conducted to establish if the

measures from the manual and image-based measures were equiva-

lent. In the case of the image-based lengthmeasures, themedian values

were 358 mm compared to 356 mm (p < 0.05) for June, 415 mm

compared to 407 mm (p < 0.001) for August, 454 mm compared to

445 mm for October, and for the final measurement, 483 mm com-

pared to 470 mm (p < 0.001). For girth the image-based predictions

significantly differed only for the October measurements with the

median being 347 mm compared to 356 mm (p < 0.05) for the manual

measurements.

Finally, the changes relative to the previous measurement for each

individual fish in the population were calculated by subtracting each

individual’s measurement from that captured during the previous sam-

pling, and these data were replotted using violin plots (Figure 6). For

themanualweightmeasurements and image-basedweightpredictions,

the distributions showed a high degree of similarity and there were

no significant differences between the two measurement types. The

image-based length measurements showed notable outliers in August

and November/December but were otherwise similar. Median length

changes were 54 mm compared to 49 mm in the June to August

interval (p < 0.001) and 29 mm compared to 25 mm for the Octo-

ber toNovember/December interval. The girthmeasurements showed

the highest disparities, with outliers influencing the distributions in

both the manual measurements and the digital image-based girth pre-

dictions. Changes in median girth for the image-based and manual

girth measurements were 40 mm compared to 38 mm for the June

to August interval, 22 mm compared to 33 mm for the August to

October interval and 12 mm compared to 7 mm for the October to

November/December interval for the image based and manual mea-

surements, respectively. These medians were significantly different

(p < 0.001) in all cases. This shows that some error was accumulated

through the prediction calculations. Despite this, there was still a high

degreeof similarity in the locations of thepopulationbulges in theplots

generated from the twomeasurement types.
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F IGURE 4 Chinook salmon sizemeasurements (n= 738) captured
between June andDecember 2019 using digital images (left axes) and
manual measurements (bottom axes). Top panel: image-based side
area (cm) andweight (g) (Linear Regression: y= 0.171x+136.078;
p< 0.001; R2 = 0.987). Middle panel: image-based fork length (y) and
manual fork length (x) (linear regression: y= 1.066x− 19.283;
p< 0.001; R2 = 0.989). Bottom panel: image-based side height at 50%
of fork length (y) and girth (x) (linear regression: y= 0.429x− 0.052;
p< 0.001; R2 = 0.918)

By the end of the experiment (December 2019), a bimodal distribu-

tion in the population was seen in both the change in weight and the

change in girth measures detected using both data capture methods

(Figure 6). As all individuals were PIT tagged and measured multi-

ple times, we were able to determine that this bimodal population

distribution was due to weight loss in a proportion of the population.

4 DISCUSSION

Our study compared manual growth measurements with digital image

analysis. The results demonstrated the utility of computer vision tech-

nology to improve phenotypic data capture of teleost fish for scientific

studies and breeding programmes where sample throughput require-

ments are relatively low, but the need for accurate data is essential.

This image-based growth assessment for Chinook salmon showed

that automated image-basedmeasurementswere comparable to those

collected manually. Images also provide a good method of archiving

phenotypic information of individual fish, which, when coupled with

individual identification of individuals, either throughmanual or image-

based tags, are an information-rich resource to inform the breeding

and production of fish in aquaculture.

4.1 Fish husbandry and workflow

The imaging units built for this study were designed as a cost-effective

means of enabling studies that require high-quality repeated mea-

surements of fish phenotype. The design is similar to those described

previously (Balaban, Chombeau, et al., 2010; Balaban, Ünal Şengör,

et al., 2010; Luzuriaga et al., 1997), but, although the units require

mains (240 V) electricity, they are portable and can be used beside

fish tanks and in wet work areas. Low-cost polypropylene was used

as the main construction material, and for the coloured removable

background—which canbeeasily sterilised tomanagebiosecurity risks.

Furthermore, the automation at point of image-capture eliminated the

need for paper-based records in fish measurement operations, which

reduced staff requirements. The workflow had two primary limita-

tions. (1) The use of a stand-alone digital camera generates some work

flow inconvenience when collating data from multiple sources, and (2)

the manual handling of fish limited the sample capture throughput.

The overall throughput of our measurement workflows in this study

was constrained (approximately 65 fish per hour) due to the need to

collectmanual fishmeasurements in addition to image-basedmeasure-

ments for comparison. However, with suitably designed husbandry and

anaesthesia in place, we estimate a throughput of 3–6 fish per minute

(approximately 250 fish per hour) per imaging unit could be achieved.

4.2 Measuring fish traits from digital images

For the software-based analysis of digital images, our selection of

Python (i.e. an accessible programming language) for automation tasks
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F IGURE 5 Chinook salmon sizemeasurements and population structures captured between June andDecember 2019 usingmanual
measurements (left panels) and digital image-basedmeasurements (right panels). The violin shapes are split to define the two separate culture
tanks; tank 1= blue and tank 2= green. Results from pairwiseWilcoxon rank sum tests comparingmatchedmanual and image-basedmeasures are
displayed (*p< 0.05; **p< 0.01; ***p< 0.001). Median image-based lengthmeasurements were found to range between 2 and 13mm (for June
2019 andDecember 2019, respectively) greater than their matchedmanual measurements
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F IGURE 6 Chinook salmon sizemeasurements and population structure captured between June andDecember 2019 usingmanual
measurements (left panels) and digital image-basedmeasurements (right panels) displayed as the change in size of each individual fish from the
previous measurement. Individual fish tracking was conducted using passive integrated transponder (PIT) tags. The violin shapes are split to define
the two culture tanks used; tank 1= blue and tank 2= green. Results from pairwiseWilcoxon rank sum tests comparingmatchedmanual and
image-basedmeasures are displayed (*p< 0.05; **p< 0.01; ***p< 0.001)
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was made with the aim of initiating the construction of simple main-

tainable automated software pipelines (Morphometric software) for

finfish phenotype measurements. Once digital images of each sampled

fish had been captured using a controlled environment and digitally

archived with their metadata, the 150 mm scale bar present in each

imageallowedapixel tomillimetre relationship tobeeasily established.

This relationship is derived from a combination of the focal length of

the camera lens and distance of the lens from the subject in the image.

In a stable imaging system, the pixel to millimetre relationship is very

consistent. The unit used here was designed with a height adjustable

arch containing the lighting and camera. As such, this relationship was

established and checked for each sampling session and was consistent

at 8.3 pixels/mm for the 4608 × 2592 pixel images captured across

all the sampling sessions. The scale bar included in each image is a

common technique for establishing and verifying dimensions in digital

images (Balaban, Chombeau, et al., 2010) and allows this relationship

to be checked and verified in any image either manually (by a person

using basic image viewing and editing software) or using an algorithm.

The effectiveness of using digital images to establish size and colour

measurements for fish has beendemonstrated by a number of previous

studies though with varying levels of accuracies (Balaban, Chombeau,

et al., 2010; Balaban, Ünal Şengör, et al., 2010; Bravata et al., 2020;

Sengor et al., 2019; Viazzi et al., 2015). Prediction of fish length (mean

error 7.6%), weight and girth have previously been demonstrated in

multiple species models (Bravata et al., 2020). With respect to image

segmentation, reference point placement andmorphometric measure-

ment, studies by Navarro et al. (2016) and Fernandes et al. (2020) have

effectively validated similar approaches. The results presented here

are comparable to these studies on other species but demonstrate that

for a single species, simple statistical relationshipsbetweenmanual and

image-basedmeasurements can be effectively established.

4.3 Comparing the performance of digital
image-based and manual measurements

Predicted weight and length measurements from digital images

showed a very high correlation with manual measurements (R2 val-

ues of 0.992 and 0.989, respectively). These relationships have been

well established in previous studies (Balaban, Ünal Şengör, et al., 2010;

Beddow et al., 1996; Fernandes et al., 2020; Shortis et al., 2016). Mea-

surements of salmon girth were modelled against the mid-point of

body height, which had a lower R2 value of 0.918. This measurement

is less commonly captured, however, and in most use cases the pre-

dicted girth values would be of adequate precision. As such, we have

demonstrated that the precision of the data generated through auto-

mated digital image analysis of Chinook salmon is comparable to that

ofmanualworkflows and therefore could replace tools frequently used

for such tasks, such asmanual balances and fishmeasurement boards.

The capture of digital images in this study allowed the outliers visi-

ble in the weight and length regressions to be traced back through the

workflow to determine if they were a product of errors in the mea-

surement workflow or of biological origin. With archived images, the

measurements canbe re-conducted (manually if needed). In the regres-

sions conducted for weight, there were two outlying points, and for

length there were three outlying points (Figure 4). These were man-

ually traced and linked to four measurements—all of which were best

explained by measurement error. One of these was likely due to an

inaccurate manual weight measurement (1303 g measured manually

and 1935 g estimated based on the measured fish side area), one was

due to an image capture error (a fish tail falling outside the frame;

Figure 3c), and two were due to inaccurate algorithmic placement of

the key points used to calculate measurements (e.g. Figure 3b). In the

case of the outliers, the errors in digital length measurement were

between 44 and 52mm smaller than thematching manual length mea-

surements. There were 11 outlying measurements for the mid-point

body height and girth regression (Figure 4). These were not manually

traced, but a pattern of six points offset and running parallel to the

regression is suggestive of a systemic measurement error. As such, the

predicted weight and girth measurement error rates achieved were

low and broadly equivalent between the manual and digital measure-

ments.Median lengthmeasurements extracted from the digital images

at eachmeasurement time pointwere significantly greater by between

2 and 13 mm than the equivalent manual length measurements. Pre-

vious work on digital measurements in fish morphometry has shown

significant variances in the nature of the data produced by people

using both manual digital and physical workflows (Petrtyl et al., 2014).

With regard to manual measurements, documented sources of error

include variations in the way in which the jaws and tail are manipu-

lated during measurement (Mous et al., 1995). Given the differences

between themanual and image-basedmeasurements demonstrated in

this study, we suggest the relaxed nature of both the jaws and tail fork

during image capture as a probable cause of this difference. Regard-

less, this error is low at a maximum of approximately 2.7%, which is

less than the 5.5%–7.6% reported in a multi species study by Bravata

et al. (2020) and suggests that high-throughput algorithmically derived

measurements will likely offer the highest quality andmost repeatable

representations of a population—especially for large populations.

4.4 Individualising fish measurements highlights
important structural features in fish populations

The population growth visualised in Figure 5 showed an overall

biomass growth between each of the measurements taken, with

a small but noticeable bimodal distribution developing in Novem-

ber/December 2019. Expressing individual fish growth measurements

as a change from previous (Figure 6) highlighted an important fea-

ture in the population structure that developed between October and

November/December 2019. The bimodal distribution in the popula-

tion at the end of the study was more evident in Figure 6, and it was

also clear that the lower subpopulation lost body mass and reduced

in girth through this period. This loss of body mass was clear in both

the manually measured weights and the digital image-based weight

and girth predictions. As would be expected in the case of loss of body

mass, no loss of lengthwasmeasured. This demonstrates the additional
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structural population knowledge gained by tracking individual fish

growthmeasurements, which is key for successful research and breed-

ing programmes, and the ease with which this information can be

collected and analysed through the capture and linkage of digital

images through to harvest. With regard to subsampling from larger

populations, previous studies have noted biases and errors, particu-

larly in large aquaculture environments (Aunsmoet al., 2013;Nilsson&

Folkedal, 2019). The detection of weight loss within a subpopulation in

large aquaculture environments presents a challenge as this informa-

tion can be concealed by continued growth of other individuals in the

population. The use of sampling strategies such as those modelled for

disease detection by de Blas et al. (2020) may allow for such a detec-

tion. The use of individually identified sentinel fish in the population

using tagging tools similar to those of Føre et al. (2017) may offer a

means of detecting this with reduced sampling numbers however and

warrants further investigation.

4.5 Opportunities arising from digital
image-based phenotypic measurements

The use of digital images to capture and store fish phenotypic mea-

surements/records offersmany advantages over traditional husbandry

measurement workflows as it accurately captures and stores multiple

externally visible phenotypic traits simultaneously. If used continu-

ously as a monitoring tool during population grow-out, this approach

has the potential to deliver high-quality individualised and population-

level growth data. With effective archival of these images, the traits

they contain remain accessible for futuremeasurement, either through

manual assessment or algorithmically, and they can be effectively

linked to other data sources. Furthermore, the development of bio-

metric identification such as that demonstrated for Atlantic salmon

by Cisar et al. (2021) may allow individual fish to be tracked without

invasive tags.

5 CONCLUSIONS

Here, we have demonstrated a simple, low-cost accessible image cap-

ture system capable of operating in wet environments that allows for

live, moderately anaesthetised fish to have high-quality images cap-

tured repeatedly during their growth cycle as phenotypic records,

using less labour resources. We have shown that the data are com-

parable in quality to those generated through manual measurement

workflows. Furthermore, once the data have been captured, mor-

phometric measurements can be produced and linked to individual

fish through automated software pipelines written in the Python pro-

gramming language—in this case using PIT tags. Potential applications

include research trials and aquaculture breeding and production pro-

grammes wishing to apply automated growth assessments of all the

fish being evaluated. Finally, we provide clear evidence that the indi-

vidualisation of fish growth data allows insights into fish growth and

population structures that are not clearly visible in anonymised size

measurements.
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Balaban, M.O., Ünal Şengör, G.F., Soriano, M.G. & Ruiz, E.G. (2010b) Using

image analysis to predict the weight of Alaskan salmon of different

species. J. Food Sci., 75, E157–E162. Available from https://doi.org/10.

1111/j.1750-3841.2010.01522.x

Beddow, T.A., Ross, L.G. & Marchant, J.A. (1996) Predicting salmon

biomass remotely using a digital stereo-imaging technique. Aquaculture,
146, 189–203. Available from https://doi.org/10.1016/S0044-8486(96)

01384-1

Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: A

practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B
Methodol., 57, 289–300. Available from https://doi.org/10.1111/j.2517-

6161.1995.tb02031.x

Bradski, G. (2000) TheOpenCV Library. Dr Dobbs J. Softw. Tools.

Bravata, N., Kelly, D., Eickholt, J., Bryan, J., Miehls, S. & Zielinski, D.

(2020) Applications of deep convolutional neural networks to predict

length, circumference, andweight frommostly dewatered images of fish.

Ecol. Evol., 10, 9313–9325. Available from https://doi.org/10.1002/ece3.

6618

Cisar, P., Bekkozhayeva, D., Movchan, O., Saberioon, M. & Schraml, R.

(2021) Computer vision based individual fish identification using skin

dot pattern. Sci. Rep., 11, 16904. Available from https://doi.org/10.1038/

s41598-021-96476-4

de Blas, I., Muniesa, A., Vallejo, A. & Ruiz-Zarzuela, I. (2020) Assessment of

sample size calculations used in aquaculture by simulation techniques.

Front. Vet. Sci., 7, 253.
Fernandes, A.F.A., Turra, E.M., de Alvarenga, E.R., Passafaro, T.L., Lopes, F.B.,

Alves, G.F.O., Singh, V. & Rosa, G.J.M. (2020) Deep Learning image seg-

mentation for extraction of fish body measurements and prediction of

bodyweight and carcass traits inNile tilapia.Comput. Electron. Agric., 170,
105274. Available fromhttps://doi.org/10.1016/j.compag.2020.105274

Føre, M., Frank, K., Dempster, T., Alfredsen, J.A. & Høy, E. (2017) Biomon-

itoring using tagged sentinel fish and acoustic telemetry in commercial

salmon aquaculture: a feasibility study. Aquac. Eng., 78, 163–172. Avail-
able from https://doi.org/10.1016/j.aquaeng.2017.07.004

Gjedrem, T. & Robinson, N. (2014) Advances by selective breeding for

aquatic species: a review. Agric. Sci., 5, 1152–1158. Available from

https://doi.org/10.4236/as.2014.512125

Gjedrem, T. & Rye, M. (2018) Selection response in fish and shellfish:

a review. Rev. Aquac., 10, 168–179. Available from https://doi.org/10.

1111/raq.12154

Houston, R. &Macqueen, D. (2019) Atlantic salmon (Salmo salar L.) genetics
in the 21st century: taking leaps forward in aquaculture and biological

understanding.Anim. Genet., 50, 3–14. Available from https://doi.org/10.

1111/age.12748

Hunter, J.D. (2007)Matplotlib: a 2Dgraphics environment.Comput. Sci. Eng.,
9, 90–95. Available from https://doi.org/10.1109/MCSE.2007.55

Iversen, M., Finstad, B., McKinley, R.S. & Eliassen, R.A. (2003) The efficacy

of metomidate, clove oil, Aqui-S (TM) and Benzoak (R) as anaesthetics

in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-

reducing capacity. Aquaculture, 221, 549–566.
Kause, A., Tobin, D., Houlihan, D.F., Martin, S.A.M., Mäntysaari, E.A., Ritola,

O. & Ruohonen, K. (2006) Feed efficiency of rainbow trout can be

improved through selection: different genetic potential on alternative

diets1. J. Anim. Sci., 84, 807–817. Available from https://doi.org/10.

2527/2006.844807x

Luzuriaga, D., Balaban, M. & Yeralan, S. (1997) Analysis of visual qual-

ity attributes of white shrimp by machine vision. J. Food Sci., 62,
113–118. Available from https://doi.org/10.1111/j.1365-2621.1997.

tb04379.x

Mous, P.J., Goudswaard, P.C., Katunzi, E.F.B., Budeba, F.W., Witte, F. &

Ligtvoet, W. (1995) Sampling and measuring. Fish stocks and fisheries
of Lake Victoria: a handbook for field observations. Cardigan, UK: Samara

Publishing Limited, pp. 55–82.

Murata, O., Miyashita, S., Izumi, K., Maeda, S., Kato, K. & Kumai, H. (1996)

Selective breeding for growth in red sea bream. Fish. Sci., 62, 845–849.
Available from https://doi.org/10.2331/fishsci.62.845

Navarro, A., Lee-Montero, I., Santana, D., Henriquez, P., Ferrer, M., Morales,

A., Soula, M., Badilla, R., Negrin-Baez, D., Zamorano, M. & Afonso, J.

(2016) IMAFISH_ML: a fully-automated image analysis software for

assessing fish morphometric traits on gilthead seabream (Sparus aurata
L.), meagre (Argyrosomus regius) and red porgy (Pagrus pagrus). Com-
put. Electron. Agric., 121, 66–73. Available from https://doi.org/10.1016/

j.compag.2015.11.015

Navarro, A., Zamorano, M.J., Hildebrandt, S., Ginés, R., Aguilera, C. &

Afonso, J.M. (2009) Estimates of heritabilities and genetic correlations

for growth and carcass traits in gilthead seabream (Sparus auratus L.),
under industrial conditions. Aquaculture, 289, 225–230. Available from

https://doi.org/10.1016/j.aquaculture.2008.12.024

Nilsson, J.&Folkedal,O. (2019) SamplingofAtlantic salmonSalmo salar from
tanks and sea cages is size-biased. Aquaculture, 502, 272–279. Available
from https://doi.org/10.1016/j.aquaculture.2018.12.053

Petrtyl, M., Kalous, L. & Memis, D. (2014) Comparison of manual measure-

ments and computer-assisted image analysis in fish morphometry. Turk.
J. Vet. Anim. Sci., 38, 88–94. Available from https://doi.org/10.3906/vet-

1209-9

RCore Team (2021) R: A language and environment for statistical computing. R
Foundation for Statistical Computing.

Schraml, R., Hofbauer, H., Jalilian, E., Bekkozhayeva, D., Saberioon,M., Cisar,

P. & Uhl, A. (2021) Towards fish individuality-based aquaculture. IEEE
Trans. Ind. Inform., 17, 4356–4366. Available from https://doi.org/10.

1109/TII.2020.3006933

Seabold, S. & Perktold, J. (2010) statsmodels: Econometric and statisti-

cal modeling with python. In: Proceedings of the 9th Python in Science

Conference, June 28–July 3. Austin, Texas.

Sengor, G.F.U., Balaban,M.O., Topaloglu, B., Ayvaz, Z., Ceylan, Z. &Dogruyol,

H. (2019)Color assessmentbydifferent techniquesof gilthead seabream

(Sparus aurata) during cold storage. Food Sci. Technol., 39, 696–703.
Available from https://doi.org/10.1590/fst.02018

Shortis, M.R., Ravanbakhsh, M., Shafait, F. &Mian, A. (2016) Progress in the

automated identification, measurement, and counting of fish in under-

water image sequences. Mar. Technol. Soc. J., 50, 4–16. Available from

https://doi.org/10.4031/mtsj.50.1.1

SriHari, M., Bhutia, R.N., Kathirvelpandian, A., Sharma, R., Ramteke, K.K.,

Sreekanth, G.B. & Abidi, Z.J. (2019) Differentiation in morphometric

traits of Chanos chanos stocks along the Indian coast. Indian J. Geo-Mar.
Sci., 48, 233–238.

Stien, L.H., Nilsson, J., Bui, S., Fosseidengen, J.E., Kristiansen, T.S., Overli, O.

& Folkedal, O. (2017) Consistent melanophore spot patterns allow long-

term individual recognition of Atlantic salmon Salmo salar. J. Fish Biol., 91,
1699–1712. Available from https://doi.org/10.1111/jfb.13491

https://anaconda.com
https://doi.org/10.1016/j.fishres.2019.105425
https://doi.org/10.1016/j.fishres.2019.105425
https://doi.org/10.1016/j.aquaculture.2013.03.001
https://doi.org/10.1016/j.aquaculture.2013.03.001
https://doi.org/10.1111/j.1750-3841.2010.01813.x
https://doi.org/10.1111/j.1750-3841.2010.01813.x
https://doi.org/10.1111/j.1750-3841.2010.01522.x
https://doi.org/10.1111/j.1750-3841.2010.01522.x
https://doi.org/10.1016/S0044-8486(96)01384-1
https://doi.org/10.1016/S0044-8486(96)01384-1
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1002/ece3.6618
https://doi.org/10.1002/ece3.6618
https://doi.org/10.1038/s41598-021-96476-4
https://doi.org/10.1038/s41598-021-96476-4
https://doi.org/10.1016/j.compag.2020.105274
https://doi.org/10.1016/j.aquaeng.2017.07.004
https://doi.org/10.4236/as.2014.512125
https://doi.org/10.1111/raq.12154
https://doi.org/10.1111/raq.12154
https://doi.org/10.1111/age.12748
https://doi.org/10.1111/age.12748
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.2527/2006.844807x
https://doi.org/10.2527/2006.844807x
https://doi.org/10.1111/j.1365-2621.1997.tb04379.x
https://doi.org/10.1111/j.1365-2621.1997.tb04379.x
https://doi.org/10.2331/fishsci.62.845
https://doi.org/10.1016/j.compag.2015.11.015
https://doi.org/10.1016/j.compag.2015.11.015
https://doi.org/10.1016/j.aquaculture.2008.12.024
https://doi.org/10.1016/j.aquaculture.2018.12.053
https://doi.org/10.3906/vet-1209-9
https://doi.org/10.3906/vet-1209-9
https://doi.org/10.1109/TII.2020.3006933
https://doi.org/10.1109/TII.2020.3006933
https://doi.org/10.1590/fst.02018
https://doi.org/10.4031/mtsj.50.1.1
https://doi.org/10.1111/jfb.13491


12 TUCKEY ET AL.

Stoskopf, M. & Posner, L.P. (2008) Anesthesia and restraint of labora-

tory fish. In: Fish, R.E., Brown, M.J., Danneman, P.J. & Karas, A.Z. (Eds.).

Anesthesia and analgesia in laboratory animals (2nd ed.). San Diego:

Academic Press, pp. 519–534. Available from https://doi.org/10.1016/

B978-012373898-1.50025-5

Takacs, P., Vital, Z., Ferincz, A. & Staszny, A. (2016) Repeatability, repro-

ducibility, separative power and subjectivity of different fishmorphome-

tric analysismethods.PlosOne, 11, e0157890.Available fromhttps://doi.

org/10.1371/journal.pone.0157890

Teletchea, F. & Fontaine, P. (2014) Levels of domestication in fish: implica-

tions for the sustainable future of aquaculture. Fish Fish., 15, 181–195.
Available from https://doi.org/10.1111/faf.12006

The pandas development team (2020) pandas-dev/pandas: pandas. Zenodo.

Viazzi, S., Van Hoestenberghe, S., Goddeeris, B.M. & Berckmans, D. (2015)

Automatic mass estimation of Jade perch Scortum barcoo by computer

vision. Aquac. Eng., 64, 42–48. Available from https://doi.org/10.1016/j.

aquaeng.2014.11.003

Waskom, M. & the Seaborn Development Team. (2020) mwaskom/seaborn.

Zenodo. Available from https://doi.org/10.5281/zenodo.592845.

[Accessed 2Nov 2021].

Zion, B. (2012) The use of computer vision technologies in aquaculture—a

review. Comput. Electron. Agric., 88, 125–132. Available from https://doi.

org/10.1016/j.compag.2012.07.010

How to cite this article: Tuckey, N.P.L., Ashton, D.T., Li, J., Lin,

H.T.,Walker, S.P., Symonds, J.E. &Wellenreuther, M. (2022)

Automated image analysis as a tool tomeasure individualised

growth and population structure in Chinook salmon

(Oncorhynchus tshawytscha). Aquaculture, Fish and Fisheries,

1–12. https://doi.org/10.1002/aff2.66

https://doi.org/10.1016/B978-012373898-1.50025-5
https://doi.org/10.1016/B978-012373898-1.50025-5
https://doi.org/10.1371/journal.pone.0157890
https://doi.org/10.1371/journal.pone.0157890
https://doi.org/10.1111/faf.12006
https://doi.org/10.1016/j.aquaeng.2014.11.003
https://doi.org/10.1016/j.aquaeng.2014.11.003
https://doi.org/10.5281/zenodo.592845
https://doi.org/10.1016/j.compag.2012.07.010
https://doi.org/10.1016/j.compag.2012.07.010
https://doi.org/10.1002/aff2.66

	Automated image analysis as a tool to measure individualised growth and population structure in Chinook salmon (Oncorhynchus tshawytscha)
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Chinook salmon culture
	2.2 | Manual fish measurements
	2.3 | Digital image capture
	2.4 | Digital image analysis
	2.5 | Data management, statistical analysis and visualisation

	3 | RESULTS
	4 | DISCUSSION
	4.1 | Fish husbandry and workflow
	4.2 | Measuring fish traits from digital images
	4.3 | Comparing the performance of digital image-based and manual measurements
	4.4 | Individualising fish measurements highlights important structural features in fish populations
	4.5 | Opportunities arising from digital image-based phenotypic measurements

	5 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICTS OF INTEREST
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING STATEMENT
	DATA AVAILABILITY STATEMENT
	PEER REVIEW

	ORCID
	REFERENCES


